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Figure 1. 3D asset gallery. All the 3D assets are generated by Hunyuan3D-1.0 given a text prompt or a single image as input. Hunyuan3D-
1.0 is a unified framework that supports high-quality text- and image-conditioned 3D generation both.

Abstract

While 3D generative models have greatly improved
artists’ workflows, the existing diffusion models for 3D gen-
eration suffer from slow generation and poor generaliza-
tion. To address this issue, we propose a two-stage ap-
proach named Hunyuan3D-1.0 including a lite version
and a standard version, that both support text- and image-

*Equal contribution.†Corresponding author.

conditioned generation. In the first stage, we employ a
multi-view diffusion model that efficiently generates multi-
view RGB in approximately 4 seconds. These multi-view im-
ages capture rich details of the 3D asset from different view-
points, relaxing the tasks from single-view to multi-view
reconstruction. In the second stage, we introduce a feed-
forward reconstruction model that rapidly and faithfully re-
constructs the 3D asset given the generated multi-view im-
ages in approximately 7 seconds. The reconstruction net-
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work learns to handle noises and in-consistency introduced
by the multi-view diffusion and leverages the available in-
formation from the condition image to efficiently recover
the 3D structure. Our framework involves the text-to-image
model, i.e., Hunyuan-DiT [22], making it a unified frame-
work to support both text- and image-conditioned 3D gener-
ation. Our standard version has 3× more parameters than
our lite and other existing model. Our Hunyuan3D-1.0
achieves an impressive balance between speed and qual-
ity, significantly reducing generation time while maintain-
ing the quality and diversity of the produced assets.

1. Introduction
3D generation has long been an attractive and active topic
in the fields of computer vision and computer graphics,
with significant applications spanning gaming, film, e-
commerce, and robotics. Creating high-quality 3D assets is
a time-intensive process for artists, making automatic gen-
eration a long-term goal for researchers. Early efforts in
this field focused on unconditional generation within spe-
cific categories, constrained by 3D representation and data
limitations. The recent success of scaling laws in large
language models (LLMs), as well as in image and video
generation, has illuminated a path toward this long-term vi-
sion. However, achieving similar advancements in 3D asset
generation remains challenging due to the expressive nature
of 3D assets and the limited availability of comprehensive
datasets. The largest existing 3D dataset, Objarverse-xl [7],
comprises only 10 million assets, which pales in compar-
ison to the large-scale datasets available for language, im-
age, and video tasks. Leveraging priors from 2D generative
models presents a promising approach to address this limi-
tation.

To take advantage of 2D generative models, pioneer-
ing works have explored this problem and achieved no-
table advancements. Poole et al. [35] utilize Score Distil-
lation Sampling (SDS) to distill a 3D representation, i.e.,
Nerf [31], via 2D image diffusion models. Despite is-
sues with over-saturation and significant time costs, this ap-
proach inspired subsequent 2D lifting research. Follow-up
works have explored to improve sampling efficiency [52],
fine-tune diffusion models into multi-view diffusion frame-
works [1, 24, 41], and replace sampling losses with reg-
ular rendering losses [23, 26, 27, 61]. However, these
optimization-based methods remain time-consuming, re-
quiring anywhere from 5 minutes to an hour to optimize the
3D representation [31, 50, 58, 63]. In contrast, feed-forward
methods [4, 11, 13, 44, 60] can generate 3D objects in mere
seconds but often struggle with generalization to unseen ob-
jects and fail to generate thin, paper-like structures. Disen-
tangling single-view generation tasks into generating multi-
view images and completing sparse-view reconstruction via

feed-forward methods is a promising path to mitigate gen-
eralization issues and eliminate the optimization problem in
SDS.

Despite several works [1, 24, 26, 27, 40, 59, 61] in multi-
view generation and sparse-view reconstruction, few have
organized these approaches into a cohesive framework that
addresses their combined challenges. First, widely used
multi-view diffusion models are often criticized for multi-
view inconsistency and slow denoising processes. Second,
sparse-view reconstruction models typically rely solely on
view-aware RGB images to predict 3D representations. Ad-
dressing these issues separately is challenging. Noticing
the need to tackle these sub-tasks together, we propose
Hunyuan3D-1.0, which integrates the strengths of multi-
view diffusion models and sparse-view reconstruction mod-
els to achieve 3D generation in 10 seconds in the best-case
scenario, achieving a subtle balance between generaliza-
tion and quality. In the first stage, the multi-view diffu-
sion model generates RGB to finish the 2D-to-3D lifting.
We fine-tune a large-scale 2D diffusion model to generate
multi-view images to enhance the model’s understanding of
3D information. Additionally, we set the 0-elevation camera
orbit for the generated views to maximize the visible area
between generated views. In the second stage, the sparse-
view reconstruction model utilizes the imperfectly consis-
tent multi-view images to recover the underlying 3D shape.
Unlike most sparse-view reconstruction models that only
use RGB images with known poses, we incorporate the con-
ditional image, without the known view pose, to provide ad-
ditional view information as an auxiliary input to cover the
unseen part in the generated multi-view images. Further-
more, we employ a linear unpatchify layer operation to en-
rich details in the latent space without incurring additional
memory or computational costs.

Our contributions are summarized as follows:
• We introduce a unified framework Hunyuan3D-1.0, sup-

port text- and image- condition 3D generation both.
• We design the 0-elevation pose distribution in the multi-

view generation, maximizing the visible area between
generated views.

• We introduce a view-aware classifier-free guidance that
balances the controllability and diversity for different
view generations.

• We incorporate the hybrid input that involves the uncali-
brated condition image as an auxiliary view in the sparse-
view reconstruction process to compensate for the unseen
part in the generated images.

2. Related Works
Recent advances in multi-view generation models and
sparse-view reconstruction models have significantly im-
proved the quality of image-to-3D generation. Here, we
briefly summarize the related works.
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Figure 2. The overview of our Hunyuan3D-1.0. Given an input image, we first utilize a multi-view diffusion model to synthesize 6 novel
views at fixed camera poses. Then we feed the generated multi-view images into a transformer-based sparse-view large reconstruction
model to reconstruct a high-quality 3D mesh. The whole image-to-3D generation process takes only around 10 seconds.

Multi-view Generation. The potential of 2D diffusion
models for novel-view generation has gained significant at-
tention since the introduction of 3DiM [54] and Zero-1-to-
3 [24]. A key challenge in this area is multi-view con-
sistency, as the quality of downstream 3D reconstruction
heavily relies on it to accurately estimate 3D structures.
MVDiffusion [43] addresses this by generating multi-view
images in parallel using correspondence-aware attention,
which facilitates cross-view information interaction. MV-
Dream [41]. Wonder3D [27] enhances multi-view consis-
tency through the design of multi-view self-attention mech-
anisms. Zero123++ [40] tiles multi-views into a single im-
age, which is also used in Direct2.5 [29] and Instant3D [20].
Syncdreamer [26] projects multi-view features into 3D vol-
umes and enforces 3D alignment in the noise space. One
significant issue with cross-view attention is its computa-
tional complexity, which increases quadratically with image
size. Although some works [16, 45] introduce epipolar fea-
tures into multi-view attention to enhance viewpoint fusion,
the pre-computation of epipolar lines remains non-trivial.
Era3D [21] proposes row-wise attention to reduce computa-
tional workloads by pre-defining the generated images with
an elevation of 0. In this work, we propose two versions
of multi-view generation models to balance efficiency and
quality. The larger model has 3× parameters than exist-
ing models, and both models are trained on a large-scale
internal dataset, ensuring a more efficient and high-quality
multi-view generation.

Sparse-view Reconstruction. Sparse-view reconstruction
focuses on reconstructing target objects or scenes using
only 2-10 input images, which is an extreme case in tra-
ditional Multi-View Stereo (MVS) tasks. Classical MVS

methods often emphasize feature matching for depth esti-
mation [2, 3] or voxel representations [5, 17, 34, 39, 46].
Learning-based MVS methods typically replace specific
modules with learnable networks, such as feature match-
ing [10, 18, 30, 47, 68], depth fusion [8, 36], and depth in-
ference from multi-view images [14, 62, 64, 67]. In contrast
to the explicit representations used by MVS, recent neural
approaches [25, 32, 33, 50, 65, 66] represent implicit field
via multi-layer perceptrons (MLPs). These methods often
rely on camera parameter estimation obtained through com-
plex calibration procedures, such as Structure-from-Motion
approaches [15, 38]. However, in real-life scenarios, inac-
curacies in pre-estimated camera parameters can be to the
performance of these algorithms. Recent works [19, 51]
propose directly predicting the geometry of visible sur-
faces without any explicit knowledge of the camera parame-
ters. We notice most existing methods assume either purely
posed images or purely uncalibrated images as inputs, ne-
glecting the need for hybrid inputs. In this work, we address
this gap by considering both calibrated inputs and uncal-
ibrated images to achieve detailed reconstructions, thereby
better integrating the sparse-view reconstruction framework
into our 3D generation pipeline.

3. Methods

We present the two stages in our approach, Hunyuan3D-1.0,
in this section. First, we introduce the multi-view diffusion
model for 2D-to-3D lifting in Sec. 3.1. Second, we dis-
cuss pose-known and pose-unknown image fusion and the
super-resolution layer within the sparse-view reconstruction
framework in Sec. 3.2.
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Figure 3. Visual comparison of reconstruction using (a) low-
resolution triplane vs (a) high-resolution triplane by super-
resolution.

3.1. Multi-view Diffusion Model

Witnessing the huge success of diffusion models in 2D gen-
eration, their potential on novel-view generation models has
also been explored. Most novel-view [24, 54] or multi-
view [26, 41, 48, 49] generation models leverage the gen-
eralization ability of the diffusion model trained on a large
amount of data. We further scale it up by training a larger
model with 3× parameters on a large-scale dataset.

Multi-view Generation. We simultaneously generate
multi-view images by organizing the multi-view images
as a grid. To achieve this, we follow Zero-1-to-3++ [40]
and scale it up by replacing the model with a 3× larger
model [37]. We utilize reference attention as employed in
Zero-1-to-3++ [40]. Reference attention guides the diffu-
sion model to generate images that share similar semantic
content and texture with a reference image. This involves
running the denoising UNet model on an extra condition im-
age and appending the self-attention key and value matrices
from the condition image to the corresponding attention lay-
ers during the denoising process. Unlike the rendering set-
tings of Zero-1-to-3++, we render target images with an el-
evation of 0◦, azimuth of {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}
and a white background. The target images are arranged in
a 3× 2 grid, with the size of 960×640 for the lite model and
1536×1024 for the standard model.

Adaptive Classifier-free Guidance. Classifier-free
guidance (CFG) [12] is a widely used sampling technique
in diffusion models to balance controllability and diversity.
In multi-view generation, it has been observed that a small
CFG helps synthesize detailed textures but introduces un-
acceptable artifacts, while a large CFG ensures excellent
object geometry at the expense of texture quality [56]. Ad-
ditionally, the performance of different CFG scale values
varies across different views, such as front and back views.
A higher CFG scale retains more details from the condi-
tion image for front views, but it can result in darker back
views. Based on these observations, we propose an Adap-
tive Classifier-Free Guidance schedule that sets different
CFG scale values for different views and time steps. In-
tuitively, for front views and at early denoising time steps,

we set a higher CFG scale, which is then decreased as the
denoising process progresses and as the view of the gener-
ated image diverges from the condition image. Specifically,
we set the front view CFG scale following the curve:

wt = 2 + 16 ∗ (t/1000)5 (1)

For other views, we apply scaled versions of this curve

wt,v = wt ∗ τv, (2)

where we define τv ∈ [0.5, 1] according to view distance
from the front, and τfront = 1 and τback = 0.5. This
adaptive approach allows us to dynamically adjust the CFG
scale, optimizing for both texture detail and geometric ac-
curacy across different views and stages of the denoising
process. By doing so, we achieve a more balanced and high-
quality multi-view generation.

3.2. Sparse-view Reconstruction Model

In this section, we detail our sparse-view reconstruction
model, a transformer-based approach designed to recover
3D shapes in a feed-forward manner within 2 seconds, us-
ing the generated multi-view images from the multi-view
diffusion model. Unlike larger reconstruction models that
rely on 1 or 3 RGB images [11, 13, 20], our method com-
bines calibrated and un-calibrated inputs, lightweight super-
resolution, and explicit 3D representation to achieve high-
quality 3D reconstructions from sparse-view inputs. This
approach addresses the limitations of existing methods and
provides a robust solution for practical 3D generation tasks.

Hybrid Inputs. Our sparse-view reconstruction model
utilizes a combination of calibrated and uncalibrated im-
ages ( i.e., the user inputs) for the reconstruction process.
The calibrated images come with their corresponding cam-
era embeddings, which are predefined during the training
phase of the multi-view diffusion model. Since we con-
strain the multi-view generation to a 0-elevation orbit, the
model has difficulty capturing information from top or bot-
tom views, resulting in uncertainties in these perspectives.

To address this limitation, we propose incorporating in-
formation from the uncalibrated condition image into the re-
construction process. Specifically, we extract features from
the condition image and create a dedicated view-agnostic
branch to integrate this information. This branch takes a
special full-zero embedding as the camera embedding in the
attention module, allowing the model to distinguish the con-
dition images from generated images and effectively incor-
porate the features from the condition image. This design
minimizes uncertainties and improves the model’s ability to
accurately reconstruct 3D shapes, even from sparse views.

Super-resolution. While a higher feature resolution in
transformer-based reconstruction enables the encoding of
more detailed aspects of the 3D shape, we have noticed that
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Method CD↓ F-scoreτ=0.1 ↑ F-scoreτ=0.2 ↑ F-scoreτ=0.5 ↑
SyncDreamer [26] 0.518 0.306 0.543 0.852

TripoSR [44] 0.356 0.511 0.727 0.920
Wonder3D [27] 0.573 0.277 0.489 0.809

CRM [53] 0.262 0.538 0.800 0.977
LGM [42] 0.409 0.442 0.658 0.881

OpenLRM [11] 0.214 0.605 0.840 0.997
InstantMesh [59] 0.216 0.670 0.862 0.977

Ours-lite 0.199 0.661 0.877 0.986
Ours-std 0.175 0.735 0.910 0.987

Table 1. Comparison on GSO [9]. Our Hunyuan3D-1.0 achieve
new state-of-the-art performance on GSO [9] in terms of CD and
F-score metrics.

most existing works predominantly use low-resolution tri-
planes. These artifacts are directly linked to the triplane
resolution, and we identify this as an aliasing issue that can
be alleviated by increasing the resolution. The enhanced
capacity also improves the geometry. However, it is not
straightforward to increase the resolution, as it follows a
quadratic complexity with the size. Drawing inspiration
from the recent works [55, 69], we propose an upsampling
module for triplane super-resolution. This approach main-
tains linear complexity with respect to the input size by
avoiding self-attention on the higher-resolution triplane to-
kens. With this modification, we initially produced 64×64
resolution triplanes with 1024 channels. We further increase
the triplane resolution by decoding one low-resolution tri-
plane token into 4× 4 high-resolution triplane tokens using
a linear layer, resulting in 120-channel triplane features at
a 256×256 resolution. Fig. 3 demonstrates richer details
captured by the model with higher-resolution triplanes.

3D Representation. While most existing 3D genera-
tion models end with implicit representations, e.g., NeRF or
Gaussian Splatting, we argue that implicit representations
are not the final goal of 3D generation. Only explicit rep-
resentations can be seamlessly utilized by artists or users
in practical applications. Therefore, we adopt the Signed
Distance Function (SDF) from NeuS [50] in our reconstruc-
tion model to represent the shape via implicit representation
and convert it into explicit meshes by marching cube [28].
Given the generated meshes, we extract their UV maps by
unwarpping. The final outputs are ready for texture map-
ping and further artistic refinement, which can be directly
used in various applications.

4. Implementation
Training datasets. We train the multi-view diffusion model
and the sparse-view reconstruction model using an internal
dataset analogous to Objaverse [6, 7]. To ensure the quality
and relevance of the training data, we filtered out 3D data
that contained complex scenes, lacked meaningful textures,
or exhibited unreasonable distortions. Additionally, all 3D
objects in the dataset were scaled to fit within a unit sphere

Method CD↓ F-scoreτ=0.1 ↑ F-scoreτ=0.2 ↑ F-scoreτ=0.5 ↑
SyncDreamer [26] 0.202 0.632 0.884 0.995

TripoSR [44] 0.157 0.776 0.915 0.999
Wonder3D [27] 0.249 0.554 0.815 0.976
OpenLRM [11] 0.158 0.754 0.940 0.992

CRM [53] 0.245 0.568 0.830 0.979
LGM [42] 0.269 0.533 0.769 0.967

InstantMesh [59] 0.187 0.678 0.897 0.990
Ours-lite 0.150 0.786 0.938 0.997
Ours-std 0.136 0.814 0.948 0.998

Table 2. Comparison on OminiObject3D [57]. Our Hunyuan3D-
1.0 achieve new state-of-the-art performance on OmniOb-
ject3D [57] in terms of CD and F-score metrics.

before rendering.
For rendering the condition images, we employed a ran-

dom sampling strategy for camera poses. Specifically,
we sampled the camera elevation from a range of [-20,
60] degrees and the azimuth from [0, 360] degrees. The
HDR is randomly sampled from the a HDR set and field
of view (FOV) were sampled from a uniform distribution
U(47, 0.01), and the camera distance was sampled from
U(1.5, 0.1). For rendering the target images, we fix the
camera parameters for model learning. We render 24 im-
ages with azimuth angles uniformly sampled from the set
{0, 15, 30, 45, ..., 330, 345} degrees, and a fixed elevation
of 0 degrees. The FOV was set to 47.9 degrees, and the
camera distance was fixed at 1.5 units. Uniform lighting
conditions were applied to ensure consistency across the tar-
get images. All renderings were completed using Blender
with a fixed rendering resolution of 1024×1024.

Training details. We train the multi-view diffusion
model and sparse-view reconstruction model separately.
For the multi-view diffusion model, our lite verison adopts
the SD-2.1 as the backbone and our standard version takes
SD-XL as the backbone. The RGB images are organized as
a 3×2 grid. The condition image is randomly resized with
[256, 512] during training, while fixed with size 512 during
inference. The target images are all resized into 320×320.
For the sparse-view reconstruction model, we extract the
image features via DINO encoder and adopt the tri-plane
as the intermediate latent representation. The reconstruc-
tion model is fisrt trained with 256 × 256 multiview input
images and then finetuned with 512 × 512 multiview input
images.

Evaluation. We evaluate our models against existing ap-
proaches using two public datasets: GSO [9] and OmniOb-
ject3D [57] with randomly sampled approximately 70 ob-
jects. To convert implicit 3D representations into meshes,
we utilized the Marching Cubes algorithm [28] to extract
iso-surfaces. We then sampled 10,000 points from these
surfaces to compute the Chamfer Distance (CD) and F-
score (FS), which are standard metrics for evaluating the
accuracy of 3D shape reconstructions. Since some methods
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TripoSROpenLRM Ours-liteInstantMesh Ours-stdInput

Figure 4. Qualitative comparisons of single-view generation. Our Hunyuan3D-1.0 achieves better visual quality compared to existing
methods

require manual recalibration to align the predicted shapes
with the ground truth, we applied the Iterative Closest Point
(ICP) method for alignment in cases where the generation
pose was unknown.

5. Results
We quantitatively and qualitatively compare Hunyuan3D-
1.0 to previous state-of-the-art methods using two different

datasets with 3D reconstruction metrics.

Quantitative Comparisons. We compare Hunyuan3D-
1.0 with the existing state-of-the-art baselines on 3D re-
construction that use feed-forward techniques, including
OpenLRM [11], SyncDreamer [26], TripoSR [44], Won-
der3D [27], CRM [53], LGM [42] and InstantMesh [59].
As shown in Table 1 and Table 2, our Hunyuan3D-1.0, es-
pecially our standard version, outperforms all the baselines,
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Figure 5. User study. Our Hunyuan3D-1.0 received the highest
user preference across 5 metrics.

Figure 6. Performance vs Runtime. Our Hunyuan3D-1.0 balance
the quality and efficiency well.

both in terms of CD and F-score metrics, achieving new
state-of-the-art performance on this task.

Qualitative Comparisons. We present qualitative re-
sults of existing methods in Fig. 4. The figure illustrates
that OperLRM [11] and TripoSR [44] struggle with geo-
metric shapes, such as the soap and the box, and often gen-
erate blurred textures, as seen with the chair and the shoes.
InstantMesh [20] captures more surface details but still ex-
hibits some artifacts in certain areas, such as the seat of
the chair, the logo on the cup, and the corners of the soap
and box. In contrast, our model demonstrates superior re-
construction quality for both shape and texture. They not
only capture the more accurate overall 3D structures of the

CFG=4 Time-adaptive CFG OursCondition

w/ hybrid inputsw/o hybrid inputsInput

CFG=4 Time-adaptive CFG Ours

+ 180 ° + 240 ° + 180 ° + 240 ° + 180 ° + 240 °

Condition

Input

Figure 7. Adaptive CFG vs Fixed CFG.

w/ hybrid inputsw/o hybrid inputsInput

Figure 8. Reconstruction on generated images only vs hybrid in-
puts.

objects but also excel in modeling intricate details. Our
Hunyuan3D-1.0 received the highest user preference across
5 metrics as shown in 5.

Performance vs. Runtime. Another key advantage of
Hunyuan3D-1.0 is its inference speed. The lite model takes
around 10 seconds to produce a 3D mesh from a single im-
age, while the standard model takes roughly 25 seconds.
Note that these times do not include UV map unwrapping
and texture baking, which takes approximately 15 seconds.
Fig. 6 presents a 2D plot comparing our method to exist-
ing approaches, with inference times on the x-axis and the
average F-Score on the y-axis. The plot demonstrates that
Hunyuan3D-1.0 achieves an optimal balance between qual-
ity and efficiency.

6. Ablation Studies.
We single out the effectiveness of our proposed techniques,
i.e., adaptive CFG, and hybrid inputs to the generation
speed and quality in this section.
Adaptive CFG. We evaluate the effectiveness of adaptive
classifier-free guidance (CFG) on the generated multi-view
images, as shown in Fig. 7. Traditional fixed CFG through-
out the denoising process often tends to generate dark shad-
ows in the back views. Although the time-adaptive CFG in-
troduced by Consistent123 [56] helps mitigate this shadow-
ing issue, it ignores the relationships between views. In our
camera orbit settings, the condition image has a larger visi-
ble area from the front view. A low CFG reduces the control
for the front view generation, while a high CFG exerts too
much control over the back view generation, causing the
model to replicate details from the front, such as the copied
logo on the back of the cup. By dynamically adjusting the
CFG according to viewpoint distance during the generation
process, we achieve a balance between controllability and
diversity across different views, enabling the model to pro-
duce more coherent and realistic multi-view images.

7



Hybrid Inputs. The hybrid input technique was designed
to enhance the reconstruction of unseen parts of 3D shapes.
To evaluate its effectiveness, we compare the shapes gener-
ated w/o vs w/ hybrid input. As shown in Fig. 8, the gen-
erated garlic exhibits a flat top due to the lack of top-view
information in our 0-evaluation orbit. By incorporating top-
view information, the reconstruction model can accurately
recover the dent around the garlic root. This demonstrates
that the hybrid input approach significantly enhances the re-
construction accuracy of unseen regions and confirms that it
produces more complete and accurate 3D shapes, especially
in areas that are not directly visible in the generated views.

7. Conclusion.
This work introduces Hunyuan3D-1.0, a two-stage 3D gen-
eration pipeline capable of creating high-quality 3D shapes.
The pipeline consists of a multi-view generation model that
produces multi-view images rich in texture and geome-
try details and a feed-forward sparse-view reconstruction
model that recovers the underlying 3D shape with explicit
representations. We incorporate several innovative designs
to enhance the speed and quality of the 3D generation pro-
cess, including adaptive classifier-free guidance to balance
the controllability and diversity for multi-view diffusion,
hybrid inputs to address the unseen part reconstruction, and
a lightweight super-resolution module to enhance the repre-
sentation of details. Extensive evaluations on benchmark
tasks demonstrate that Hunyuan3D-1.0 achieves state-of-
the-art performance in 3D generation. Our method consis-
tently outperforms existing approaches, highlighting its ef-
fectiveness in addressing the inherent challenges of 3D gen-
eration. These results validate the robustness and efficiency
of our proposed pipeline, making substantial contributions
to the 3D Generative community.
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